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A theoretical investigation is made of turbulent thermal convection in a horizontally 
infinite layer of fluid confined between a rigid isothermal upper plate and a rigid 
adiabatic lower plate, driven by a temperature difference between the plates that is 
totally induced by volumetric heating of the layer. The dependence of upper surface 
Nusselt number, N u ,  on both Prandtl number, Pr, and internal Rayleigh number, 
Ra,, is obtained from considerations of the Boussinesq equations of motion. Also 
obtained is the dependence of various turbulence quantities upon distance from the 
upper plate. At a sufficiently high Rayleigh number, the present theory gives N u  N Raf 
for large Pr and N u  N PrtRa$ for small Pr. At lower Rayleigh numbers, however, the 
Nusselt number is found to  vary according to N u  N (a  - bRa,lAe)-l Raf ,  where a and 
b are coefficients dependent upon Pr. The asymptotic Ra$ law tends to support the 
boundary layer instability model of Howard (1 966), although significant deviation 
from the model is predicted by the present theory over the range of Rayleigh numbers 
explored experimentally (Kulacki & Nagle 1975; Kulacki & Emara 1977). Based upon 
the results of this study the empirical power-law representation of N u  is critically 
examined and found to be adequate within finite ranges of Ra,. Comparison of the 
present flow situation is made with the corresponding case of turbulent BBnard 
convection. 

1. Introduction 
The process of turbulent thermal convection in a volumetrically heated horizontal 

fluid layer bounded below by a rigid zero-heat-flux surface and above by a rigid iso- 
thermal surface has recently received special attention both experimentally and 
theoretically, mainly because of its relevance to the post-accident heat-removal 
situation encountered in a hypothetical core-meltdown event in a nuclear power 
reactor. Such process differs from that of turbulent BBnard convection in that the total 
heat flux is not constant but varies across the layer. With the lower surface of the layer 
being thermally insulated, the flow has to bring all parts of the heat-generating fluid 
close to the upper surface to permit them to lose heat by conduction. As a result, the 
mechanism of turbulent heat transport in a horizontal layer heated from within is not 
quite the same as that heated from below. While the heat transfer properties of 
turbulent BBnard convection have been studied extensively (Malkus 1954; Priestley 
1959; Kraichnan 1962; Herring 1964; Howard 1966; Spiegel 1971; Chu & Goldstein 
1973; Garon & Goldstein 1973; Threlfall 1975; Long 1976a, b ) ,  the characteristic 
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features of heat source-driven convection are less understood. A desire to seek a clear 
physical picture of the process provides the major motivation for this study. 

Experimental work on turbulent thermal convection in heat-generating layers with 
thermal and hydrodynamic boundary conditions of interest to the present study is 
limited to the investigations of Fiedler & Wille (1971), Kulacki & Nagle (1975) and 
Kulacki & Emara (1977). All of these studies employed electrolytically heated water 
layers to measure the average Nusselt number, Nu, at the upper surface as a function 
of the internal Rayleigh number, Ra,, defined in terms of the layer depth and the 
strength of volumetric heat generation. The results were presented in the form 

Nu = constant x Ra?. 
Fiedler & Wille reported a value of m = 0.228 in the range 2 x lo5 < Ra, < 6 x lo8. 
A somewhat different value of m = 0.239 was reported by Kulacki & Nagle for 
1.5 x lo5 < Ra, < 2.5 x lo0 and 6-21 < Pr < 6.64. Kulacki & Emara performed mea- 
surements in the range 1.89 x lo3 < Ra, < 2.17 x 1012 for 2-75 < Pr < 6.86 and 
reported a value of m = 0.227 similar to that obtained by Fiedler & Wille, but with 
a much lower value for the constant. Although the work of Kulacki & Emara covers 
a wide range of Rayleigh numbers, their data do not permit determination of the 
behaviour of the upper surface Nusselt number as the internal Rayleigh number 
approaches infinity. Whether the above observations are consistent with the asymp- 
totic law of dependence of heat transport on Rayleigh number has yet to be examined. 
So far, there is no physical explanation on the N u -  Ra, relation over the range of 
Rayleigh numbers observed in laboratory experiments. 

Very few theoretical studies have been made of the turbulent convection problem in 
question. In part, this is because of the fact that there are more unknowns than 
equations in the mathematical representation of the flow. The lack of experimental 
data on the detailed structure of turbulence imposes further difficulties on the task of 
solution. Fiedler & Wille performed an approximate analysis of the heat-transport 
problem in 197 1.  They appealed directly to the Prandtl mixing-length hypothesis to 
close the turbulent energy equation. Their analysis resulted in the prediction of the 
average Nusselt number a t  the upper surface but had to rely on estimates of the 
empirical constants resulting from their approach. Cheung (1977) employed a rather 
different phenomenological model to analyse the same problem. He considered the 
process of turbulent thermal convection to be well described by a local Rayleigh 
number of the flow, which was characterized by a local buoyancy difference and a local 
length scale. The former was related to a local temperature drop according to the 
Boussinesq approximation and the latter, to local distances from the upper and the 
lower walls. No account was made for the effect of Prandtl number. The approach was 
later shown to be applicable to transient convection situations (Cheung 1 9 7 8 ~ ) .  None 
of these studies, however, provides a direct comparison between the processes of heat 
source-driven and Rayleigh-BBnard convection. Most recently, Cheung (1978b) and 
Bergholz, Chen & Cheung (1979) made use of the boundary-layer dominant aspect of 
turbulent flows to examine the reported heat-transfer data for internally, heated and 
bottom-heated layers. The common character of upper surface heat transfer in the two 
layers was demonstrated empirically by a simple bou-ndary-layer type of analysis. 
Unfortunately, comparison between the fundamental physical features for the two 
processes cannot be made from considerations of the heat-transfer data alone. 
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In the present approach, the process of heat source-driven convection in the 
turbulent flow regime is investigated theoretically based upon systematic mathe- 
matical approximations to the Boussinesq equations of motion. The internal Rayleigh 
number of the layer is considered to be sufficiently high so that most of the change in 
mean temperature occurs in thin boundary-layer regions near the wall. Two asymp- 
totic cases, one for high Prandtl number and the other for low, are treated in a manner 
similar to that of Kraichnan (1962). For high Prandtl number, we consider a thin 
conduction layer imbedded in a thick viscous layer; for low Prandtl number, the 
conduction layer is considered thicker. In either case, the behaviour of the velocity 
and temperature fields in the molecular boundary layers is studied separately from 
that in the turbulent core. Functional dependence of the upper surface heat transfer 
upon internal Rayleigh number and Prandtl number is then derived by matching of 
the flows in the two regions. Generalization of the functional expression is performed 
subsequently to the case of moderate Prandtl number. The local and overall heat 
transfer properties so obtained are compared with those of turbulent B6nard convection 
to identify the basic differences as well as similarities between the two motions. In 
addition, the behaviour of the upper surface Nusselt number as the internal Rayleigh 
number approaches infinity is determined. How and why the Nusselt number deviates 
from its asymptotic behaviour at  lower Rayleigh numbers are discussed together with 
experiment. 

2. Theoretical considerations 
Consider the process of turbulent heat transport in a horizontally infinite layer of 

volumetrically heated fluid bounded below by a rigid, adiabatic surface and above by 
a rigid, isothermal surface. The strength of the volumetric heat generation is assumed 
to be spatially uniform and time invariant so that a statistically steady one-dimensional 
transport is maintained in the layer. The properties of the fluid are assumed to be 
constant except density variation in the buoyancy force. In  natural units, the 
Boussinesq equations of motion are 

(a/at - a V 2 )  T = - (U . V) T + X/poC,, 

( a / a t - ~ V ' ) ~  = - ( ~ . V ) ~ - p r l V P + k g p T ,  

v.u = 0, (31 

where u is the velocity vector, T the temperature, P the pressure, po the mean density, 
S the volumetric rate of heat generation, C, the specific heat, a the thermal diffusivity, 
u the kinematic viscosity, g the gravitational acceleration, p the isobaric coefficient of 
thermal expansion, and k the unit vector in the vertical. In the above formulation, 
the zero of temperature is taken to be the mean temperature in the turbulent core. This 
is virtually the same as the lower surface temperature since the bottom is thermally 
insulated and no thermal boundary layer is present there. Note that the main driving 
force of the motion is represented by the term S/poC,. The temperature difference AT 
between top and bottom surfaces is merely a consequence of volumetric heating of the 
layer. Dimensional considerations of (1)-(3) indicate that the upper surface Nusselt 
number 

Nu = @La/aAT, (4) 
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is a function of the Prandtl number, Pr = v/a, and the internal Rayleigh number of 
the layer 

where @ = S/poC,. Unlike the case of Rayleigh-B6nard convection, the upper surface 
heat transfer, SL, is a known quantity in the present case, the unknown being the 
temperature difference AT. 

Assuming the flow to  be statistically stationary and one-dimensional, the dependent 
variables may be decomposed into the mean and fluctuating parts, i.e., 

Ra, = g$@L5/2a2v, ( 5 )  

T = F + e ,  F = F ( ~ ) ,  B = a = 0, (6) 

ad2T/dz2 = m p z -  @, (7) 

e = - w d F / d z -  [(u. v) 0-  (u. v)  el, 

where z is the vertical co-ordinate measured upward from the lower surface. The 
governing equations become 

( a p t  
(slat - vV2) u = - (U . V )  u - p ~ ' V p  + kg$O, 

(8) 

(9) 

where p = P - p - po t 3  is the fluctuating pressure and u1 is the velocity component in 
the vertical direction. Equation (7)  may be integrated once to yield 

-adT/dz+wT= @z, (10) 

where the boundary condition a t  the insulated lower surface has been used to eliminate 
the constant of integration. Clearly, the sum of the molecular and convective heat 
fluxes is not a constant as in the case of Rayleigh-BBnard convection but proportional 
to the distance from the lower surface. To see how this affects the motion of the layer, 
let us examine briefly the turbulent kinetic energy equation. Multiplying both sides of 
(9) by u and taking the ensemble average of the resultant equation, we obtain 

(11) 
-- d [z8(q2+p/po)-vdg2/dz]+g$we-e = 0, 

d2 

where q2 = 4u.u is the turbulent kinetic energy and e = v(aui/axj)2 is the energy 
dissipation. The term ~$2 represents the production of and is directly proportional 
to ( @ z + a d F / d z ) .  At a sufficiently high Rayleigh number, the gradient of the fluid 
temperature d T / d z  is important only in a thin molecular boundary layer a t  the upper 
wall. Over the body of the layer, the temperature is practically constant. Therefore, the 
rate of production of ?is not a t  the same level even in the core region but varies almost 
linearly with z in the layer, having a zero value a t  the bottom and a maximum near the 
top. It is conceivable that the present flow structure can be quite different from that of 
a BBnard layer. 

3. High-Prandtl-number approximation 
For Pr 9 1, we may consider three different flow regions: the imbedded ther- 

mal boundary-layer region L > z > L - S,, the viscous boundary-layer region 
L - 8, > z > L - a,, and the turbulent core region L - 8, > z > 0. In  the imbedded 
thermal boundary-layer region, we may assume that molecular transport dominates 
over the corresponding eddy transport. From (lo),  we expect 

ladT/dzI  - I@zI or aAT,/8, - @L, (12) 
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where AT,is the temperature difference across the thermal boundary layer. I n  writing 
(12), we have made use of the assumption of S,/L < 1 to  set z N L. The validity of this 
assumption will be discussed shortly. In  addition, we expect from (8) 

JaV281 N IwdT/dzl or a(@,/@ N (w)tAq/St,  (13) 

where ( ) denotes the r.m.s. value and the subscript t refers to the thermal boundary 
layer. Finally, we assume that the viscous term and the buoyancy term in (9) are of the 
same order, i.e., 

ll’V2UI - l9pq or l’<w)t/q - S P ( 4 t .  (14) 

The above equations lead to  
s, - (gP)-’ d(QL) -& Pr-4, 

From (5) and (15), we have 

St/L - Ra,jb. 

Hence St/L < 1 is a valid assumption a t  high Rayleigh numbers. Note that tahe lower 
surface temperature is taken to be zero in our convenbion, and that the upper surface 
temperature is equal to  -AT. From (16),  the mean temperature a t  the edge of the 
thermal boundary layer may be expressed by 

(18) = C,(gP)-i v-i(QL)% Pr4 - A T ,  

where C, is a factor of proportionality and where we allow variation with Pr in a manner 
such that C, is independent of Pr as Pr -+ co. 

I n  the viscous boundary-layer region, molecular viscosity and eddy conductivity 
are considered to be dominant. If we assume St < S, < L and a finite correlation 
between w and 8, (10) may be approximated by 

Z3 - QZ or ( w ) ~  (e), QL, (19) 

where the subscript v refers to  the viscous boundary layer. The conditions for S, < 8, < L 
will be discussed. Here we may also assume a balance between the viscous and buoyancy 
terms in the vertical equation of motion, i.e., 

where AT, is the increment in temperature from the edge of the thermal boundary 
layer to the edge of the viscous boundary layer. I n  addition, we may assume that the 
production and dissipation terms in ( 1  1 )  are of the same order. Using the argument 
that the internal dynamics of turbulence must transfer energy from large scales to 
small scales (see for example Tennekes & Lumley 1972), the rate of dissipation of 
turbulent energy may be estimated according to the energy of the large eddies (which 
is of order (w):) and their time scale (which is of order S,/ ( w ) ~ , ) .  We get 
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where the relation - @L has been used. Manipulation of (19)-(22) leads to 

8, - (g/3)-) V)(@L)--* 

AT, - (gP)-a v-*(@L)~. 

From (5), (15), and (23), we have 

8,/8, - Pr-4 and 8,/L - PrtRaif. 

Hence S, < 8, < L is a valid assumption if the conditions Pr % 1 and Ra, 4 Pr2 are 
satisfied. We may now construct the near-field temperature profile Fv in the region 
L - 8, > z > L - 8,. From (18) and (24), we obtain 

!i?, = C,(gP)-* v-i(@L)f Pr) + (g/3)-i v-)(@L)Q f (7, Pr) -AT,  (26) 

where 7 = ( L - z ) / S ,  and f is independent of Pr as Pr-+co. The behaviour off (7, Pr) 
will be determined later. 

Let us now investigate the turbulent core region. Here we expect eddy transport 
dominates over the corresponding molecular transport. If again we assume a finite 
correlation between w and 8, (10) may be approximated by 

- 
we N @z or (w), (B), - (@L)  (z/L),  (27) 

where the subscript c refers to the turbulent core. Outside the wall region, we may 
assume a balance between advection and buoyancy in (9), i.e., 

I(u.V)ul - l s P l  or ( W ) X L - 4  gPP>,, (28) 

whereas in (8) we assume 

where is the turbulent core temperature and C, is an integration factor. In writing 
(28), we have chosen ( L  - z )  as the appropriate length scale of mixing relative to the 
upper surface. From (27), (28) and (29), we get 

<W>c (SP)* (@L)*L*(Z/L)* (1 - Z / L ) i ,  (30) 

(e), (gp)” (@L)+ L-*(z/L)+ (1 - z/L)-+, (31) 

T, - (gp)-* ( @L)) L-B[ (~ /L )+  ( 1  - q ~ ) - f  + c,], (32) 

where C, is a new integration factor and where we allow variation with Pr in a manner 
such that C, is independent of Pr as Pr -+ 00. Two important differences in turbulent 
core structure may now be distinguished between heat source-driven and Rayleigh- 
BBnard convection. First, reIative to  the upper surface, the r.m.s. vertical velocity 
varies according to ( L  - z)* in BBnard flow (Kraichnan 1962) whereas it varies according 
to [z(L-z)]* in the present case. Second, the turbulent core temperature varies 
according to (L-2)-f in BBnard convection whereas here it varies according to 
z j ( L  - z)-*. The two differences, however, become less and less significant as we 
approach from the interior core region to a region just outside the molecular boundary 
layer at  the upper wall, where (but not L - z )  may be regarded to have a constant 
value of - L. Insofar as the near-field behaviour is concerned, the two convective 
processes are indeed similar (Cheung 1978b; Bergholz et al. 1979). For a given Pr, we 
may choose 7 and 6 as the two independent variables for the problem in question, 
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where C; is defined by C; = SJL. In terms of 7 and C;) the far-field temperature profile may 
be constructed directly from (32). This is 

Fc = C,(sP)-+ (WQ L - * G  + (rO-* (1  - 75)31, ( 3 3 )  

where C, is a proportionality factor dependent upon Pr. 
Let us now match the expressions for the near-field and the far-field temperatures. 

Here we assume that, a t  high Rayleigh number (for which C; < 1 ) )  there is a region of 
overlap (i.e. pt, = Fc) near the edge of the molecular boundary layer where z - L - S,, 
or 7 - 1. Without experimental evidence, the existence of such an overlap region may 
be conceivable based upon the argument that molecular viscosity and eddy viscosity 
are of the same order there. For C; < 1 and 7 - 1, (23), (26), and ( 3 3 )  together with 
the definition of C; lead to 

C,Prt+f -Y  = c2@+C3+[1 +O(cT)], ( 3 4 )  

where C, and C3 are new proportionality factors dependent upon Pr and 

‘4’ = (gP)a d(@L)-S AT = Y(C;, Pr) .  

f-C,+ = Y-C,Pr3+C2C;f = C,, 

(35) 

Neglecting the higher-order term in ( 3 4 )  and rearranging, we obtain 

( 3 6 )  

where C, is a parameter dependent upon Pr alone. This result is a consequence of the 
fact that f is a function of 7 while YP is a function of C;. Solutions are 

f = C,+C,y” and Y = C,+ClPr4-C2C;~. (37) 

Thus the functionf (7, Pr)  varies according to q-) in the vicinity of 7 N 1. By manipula- 
tion of ( 4 ) )  ( 5 ) )  (25)) (35)) and ( 3 7 ) )  we obtain an expression for the upper surface 
Nusselt number : 

Raf 
C, + C, Pr-4 - C, PrtRa$*’ 

NU = 

where C,, C,, and C, are all Pr dependent but become independent of Pr as Pr .+ 00. 

Note that for turbulent flow, the term C, Pr-*Ra$ is relatively small especia.lly when 
Pr is very large. If, in addition, Ra, is sufficiently large, ( 3 8 )  reduces to 

( 3 9 )  N u  = K ,  Ra,, a 

where K ,  is a true constant. This is the asymptotic behaviour of Nu for Pr % 1 .  The 
t power-law dependence of Nu on Ra, has been obtained by Cheung (1977)  based upon 
a simple dimensional reasoning. 

4. Low-Prandtl-number approximation 
For Pr < 1, we may consider two principal flow regions: the thermal boundary-layer 

region L > z > L-8, and the turbulent core region L-S, > z > 0. The imbedded 
viscous boundary layer is of trivial importance insofar as heat transfer is concerned. 
Since the effects of molecular or fluid properties are negligible outside the wall region, 
we may expect the turbulent core structure to be independent of Pr. Keeping in mind 
that S, < St the two independent variables are chosen to be 7 = ( L  - z) /S ,  and C; = &/L. 
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In  terms of 7 and 6,  the present far-field temperature profile may be constructed 
directly from (32). This is 

where Cl and C, are parameters dependent upon Pr. Note that the thermal boundary- 
layer thickness S,, which in this case is a measure of the effective wall region, is an 
unknown variable to be determined. For L > z > L - St, we may approximate (10) by 

Iad!F/dzI N I @ z I  or aAT,/S, - @L, (41) 

where A 5  is the temperature difference across the thermal boundary layer and where 
the assumption of 6,/L < 1 has been employed to set z E L. Based upon the above 
expression the following near-field temperature profile may be constructed : 

!Ft = a-1@L2f; f (7, Pr) -AT,  (42) 

where the term AT comes from our convention for the zero of temperature and f is 
independent of Pr as Pr -+ 0. 

Let us now match the expressions for the near-field and the far-field temperatures. 
As before, we assume that, at  high high Rayleigh number (for which f; < l) ,  there is a 
region of overlap (i.e., T ,  = Fc) where z - L-S, or 7 N 1.  The existence of such an 
overlap region may be conceivable if here we argue that molecular conductivity and 
eddy conductivity are of the same order. For 5 < 1 and 7 - 1, the following relation 
may be obtained by manipulation of (4), ( 5 ) ,  (40) and (42): 

where C, and C, are new parameters dependent upon Pr and 

x = RatPrf = ~ ( f ; ,  Pr),  

$ = Nu-' = $( f ; ,  Pr) .  

(44) 

(45) 

In  writing (44) and (45), we have required Ra, = Ra,(f;, Pr) and N u  = Nu(Ra,, Pr). 
These functional forms will be examined shortly. If we differentiate (43) with respect; 
to 7 and neglect the higher-order term, we get 

(46) xf = - -  $c,(~C;)-% or -$f, = $C2f;-4x-1 = C,, 

where fv is the first derivative off and C3 is a parameter dependent upon Pr alone. 
Solutions are 

x = (C2/3C3) 6-3 and f = 3C37-f + C,, (47) 

$ = W4-C55% (48) 

5 = A,Ra,*Pr-*, (49) 

where C, is an integration factor. Equation (43) now yields 

where C, is another parameter dependent upon Pr. Equations (44) and (47) lead to 

where the parameter A, is independent of Pr as Pr + 0. This is the definition of S,. 
Clearly, for Pr < 1, St < L is a valid assumption if the condition Ra, 9 Pr-1 is 
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satisfied. We may now use (45) ,  (48)  and (49)  to obtain the upper surface Nusselt 
number: 

where A ,  and A,  are Pr  dependent. It can be seen from (49)  and (50) that  a t  a given 
Prandtl number both N u  and Ra,  can be chosen as functions of [alone. Thus the present 
analysis is self-consistent. Although (38)  and (50) are quite similar in appearance, here, 
the term A,Pr-hRa$s is not negligible especially when P r  is very small. If, however, 
Ra,  is sufficiently high, (50) may reduce to 

N u  = K,  Raf Pr i ,  (51) 

where K,  is a true constant. This is the asymptotic behaviour of N u  for Pr < 1. At 
this extreme, the upper surface Nusselt number varies according to  Pra rather than 
the Q power law as in the case of BBnard flow (Kraichnan 1962; Long 1976a, b) .  

5. Moderate Prandtl number : comparison with experiment 
For a moderate value of Pr, we may assume 6, - S,, so that there is a single boundary- 

layer region a t  the upper surface in which molecular transport of heat and momentum 
dominates over the corresponding eddy transport. The behaviour of the velocity 
and temperature fields within the boundary layer may be determined by performing 
an analysis similar to the one just done. The upper surface Nusselt number may then 
be obtained by matching of the boundary layer and 
However, we may directly generalize the expression for 
This gives 

Ra$ 
B, A - B, Pr-*Ra$z ’ N U =  ___ 

where A, B,, and B, are functions of Pr  and 

the turbulent core regions. 
Nu in view of (38 )  and (50). 

A --f Pr-4, B,(i = 1,2)  = constant as P r  --f 0 

A -+ I + B,Pr-t, B,(i = 1 , 2 , 3 )  = constant as Pr  + CQ. 

For moderate Prandtl number, A, B,, and B, may be determined from measured data. 
Before making a comparison with experiment, i t  is worthwhile at this stage to examine 
briefly the boundary-layer instability model of Howard (1966)  based upon the present 
results. 

For thermal convection at  high Rayleigh number, Howard proposes that the mole- 
cular boundary layer is marginally stable a t  the wall such that a local Rayleigh number 
based on its thickness attains a critical value of Ra,, where 

} (53)  

Ra,  = gpATS3/aV. (54 )  

Currently, Cheung (1978b) demonstrates from the existing heat transfer data that, 
over the explored range of Rayleigh number in the turbulent case, Ra,  is not a constant 
but a function of S/L .  We shall now show that this observation is nevertheless consistent 
with the assumption that Ra,  is a constant as the Rayleigh number approaches 
infinity. From ( 2 5 )  and (49) ,  a general expression for the boundary-layer thickness 
may be derived. This is 

6 -  yRa;bL, (551 
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FIGURE 1. Ra)/Nu ‘US. Ra,h. - , theoretical line of (60) ; 
0, Kulacki-Nagle ( 1975). 

where y -+ Pr-4 as Pr -+ 0 and y + Pr3 as Pr -+ 00. With this expression, (54) becomes 

Ra, - r3Rai/Nu, (56) 

where (4) and ( 5 )  have been employed. For a given Prandtl number, Ra, is directly 
proportional to Raf/Nu.  From (52), we get 

Ra$/Nu = B, A - B, PrbRaFA. (57) 

Thus we require Ra, & (B,Fra/B,A)12 for Ra, to be strictly constant. At a lower 
Rayleigh number, Ra, is a function of Ra, or, equivalently, a function of 6/L. 

We may now compare the present analysis with recent experimental measurements 
of heat flux in water by Kulacki & Nagle (1975) and Kulacki & Emara (1977). Using 
two fairly entreme experiments of Kulacki & Nagle, with 

we obtain 

N u  = 5.71, 

N u  = 45.25, 

Ra, = 1.582 x lo5, 

Ra, = 1.306 x lo9, (58) 

(59) 

where Pr N 6.5 has been assumed for water. The use of (59) can be shown to give a 
result which is very close to the one obtained by a least-square fit. Rewriting the above 
equation in the form 

a straight line is obtained when plotted in the Raf/Nu-Ra$ space. In figure 1, we 
have drawn the theoretical line of (60 )  together with the data of Kulacki & Nagle. In 
spite of the scatter in the experimental data, the present theory is in reasonable 
agreement with the observations. Note that the plot of R a f / N u  versus Ra?A tends to 
amplify the conventional Nu-Ra., relationship. A small difference in the RaflNu-Ra,i- 

Ra f lNu  = - 3.628 + 4-831Ra$, (60) 
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In Rar 

FIGURE 2.  In Nu vs. In RaI. - , theoretical curve of (59) ; 
0, Kulacki-Nagle (1975). 

expression would, therefore, lead to a negligible error in the calculated Nusselt number. 
AS shown in figure 2, the data of Kulacki & Nagle appear to be fairly well correlated 
by the theoretical curve when presented in the Nu-Ra, space. 

A slightly different expression for N u  may be obtained using the data of Kulac,ki & 
Emara. We get 

where we have employed the following two sets of experiments: 

1 N u  = 5.30, 

N u  = 143.27, 

Ra,  = 1.065 x lo5, 

Ra, = 1.546 x loll. 

Again, the use of (61)  can be shown to give a result which is very close to  the one 
obtained by a least-square fit. Rewriting the equation in the form 

R a f l N u  = -4.1l2+4.854RaIh, (63) 

a straight line is obtained when plotted in the RaflNu-RaIIA space. Note that a value 
of Ra,  as high as 2.17 x 1012 has been achieved in the work of Kulacki & Emara, but 
for Ra, > 1.546 x loll, the effect of property variation has been found to be quite 
large. Therefore, we do not intend to analyse that portion of the data. In  figure 3, we 
have drawn the theoretical line of (63 )  together with the data of Kulacki & Emara. 
Although the data appear to be somewhat scattered, the range of the internal Rayleigh 
number covered in this case is sufficiently wide to  lend real support to the Ra$ term 
in (52) .  Again, the agreement between the present theory and the experimental data 
becomes highly satisfactory when compared in the conventional Nu-Ra, space, as 
can be seen in figure 4. Moreover, within the explored range of Ra,, the theoretical 
curtie itself may well be approximated by the Ra:227 law (Kulacki & Emara 1977). This 
explains the fact that often the measured data can be correlated successfully by a 
simple power-law relationship, which has no theoretical basis. To further illustrate 
this point, we have reconstructed the theoretical curve of (61) in the RaflNu-Ra,  
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FIGURE 3. R a f l N u  vs. Ra,i%. -, theoretical line of (63) ; 

0, Kulacki-Emma (1977) .  
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FIGURE 4. In Xu vs. In Ra,. -- , theoretical curve of (61);  

space over a rather wide scale of Ra,, ranging from lo5 to  as shown in figure 5. 
This plot shows exactly how the Nu-Ra, relation deviates from the asymptotic 
hehaviour a t  a not-sufficiently high Rayleigh number. Clearly, we may approximate 
the cheoretiral curve by a number of successive straight-line segments. In  particular, 
we may have 

(64) 

Nu - Ra",.27 for lo5 < Ra, < loll, 

Nu - Ra;245 for 1OI2 < Ra, < loz2, 

N u  - for Ra, >, 
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FIGURE 5 .  In (Railh'u) as. In Ra,. __ , theoretical curve of (61) ; - - -, 
power-law expression (64) ; 0, Kulacki-Emam (1977) .  

These segments, when presented in the conventional Nu-RuI space, become identical 
to (61).  Note that the plot of Ra) /Nu  versus Ra, greatly amplifies the differences 
among various experimental measurements and thus results in a considerable scatter 
of the data. As a result, the asymptotic value of Rut /Nu ,  which in this case is equal to 
4.854, cannot be determined by the heat-transfer data alone. This indicates that a 
simple dimensional analysis may only be used to predict the Rat behaviour in a 
qualitative manner. 

We have remarked that there are sensible departures from the asymptotic behaviour 
a t  the Rayleigh numbers so far explored. We may now estimate the magnitude of nuI 
for (59) and (61) to  yield a close approximation to the Raf law. From (59), we get 
Ra, > 3.2 x lozz for an error of less than 1 yo in the upper surface Nusselt number. The 
corresponding inequality based upon (61) is Ra, > 1.4 x loz3. In  view of (56), these 
also are the conditions for Ra, to  be strictly constant. Far below these limits, the 
assumption of a constant Ra, is a very crude approximation (Sparrow, Husar & 
Goldstein 1970; Da,venport & King 1975; Manton 1975). 

6. Discussion and summary 
A simple theory has been developed for the dependence of the upper surface 

Nusselt number upon Prandtl number and internal Rayleigh number in turbulent 
thermal convection in a horizontal fluid layer heated from within. The behaviour of 
the velocity and temperature fields in various flow regions within the layer has been 
determined for both high and low Prandtl numbers. The results indicate that the 
present turbulence structure, particularly the variation of mean turbulent temperature, 
r.m.s. vertical velocity, and the production of turbulent energy in the core region, is 
quite different from that of Rayleigh-BBnard convection, although buoyancy is the 
main driving force in both cases. On the other hand, the boundary-layer-dominant 
aspect and the convective pattern within and adjacent to the wall region are quite the 
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Rayleigh-B6nard Heat source-driven 
convection convection 

Constant CDZ 

Constant CDZ 

Total heat flux 
Production of turbulent 
energy in the core 

(turbulent core region) 
R.m.8. vertical velocity (L.-Z)+ [ z ( L  - 4l+ 

Turbulent core temperature ( L  - 2)-+ zQ(L - 2 ) 3  
Asymptotic law of dependence R d  Raf 

Asymptotic law of dependence RaiPr) Ra! Pri 
of heat transport (large Pr) 

of heat transport (low Pr) 
Pr = v/a, Ra = g/3ATL3/av, Ra, = g/3@L6/2aav. 

TABLE 1. Comparison between heat source-driven and Rayleigh-B6nard convection. 

same for the two buoyancy-induced motions. This may be an explanation to the 
observations that the processes of upward heat transfer in bottom-heated and 
internally heated fluid layers are qualitatively similar yet quantitatively different 
(Cheung 19783; Bergholz et aE. 1979). A brief comparison between heat source-driven 
and Rayleigh-BBnard convection is summarized in table 1. In  addition, we have 
examined the validity of the boundary-layer instability model of Howard (1 966) based 
upon the present theory. For Ra, to be strictly constant, Ra, has to be sufficiently high 
(which is of the order 1023 for water). At a lower Rayleigh number, Ra, is a function of 
6/L and this results in departures from the asymptotic R a j  law. A closed-form 
expression for the deviated Nu-Ra, relation has been obtained and discussed along 
with experiment. Finally, we have shown that the empirical power-law relation so far 
employed in experimental correlation is an adequate expression for N u  within a finite 
range of Ra,. 

Owing to the lack of experimental data on the detailed structure of turbulence, many 
elements of the present analysis have been inferred from the corresponding case of 
BBnard flow. The order-of-magnitude analysis employed in the boundary-layer region, 
for example, has been used by Long ( 1 9 7 6 ~ )  b )  for the case of Rayleigh-BBnard flow. 
Similarly, the mixing-length treatment employed in the turbulent core region has been 
used by Priestley (1959) and Kraichnan (1962). Moreover, the same three cases of 
large, small, and intermediate Prandtl numbers considered in this study have been 
treated in Kraichnan’s paper (1962) on BBnard convection at  large Rayleigh numbers. 
The present approach, however, differs markedly from that of Kraichnan in that here 
no assumption is made regarding the transition PBclet and Reynolds numbers. The 
rate of heat transfer in the present case is determined completely by matching of the 
boundary layer and the turbulent core flows. In  so doing, we are not only able to 
obtain the asymptotic law of heat transport a t  a sufficiently high Rayleigh number but 
are also able to understand how and why the Nu-Ra, relation deviates from the 
asymptotic behaviour a t  lower Rayleigh numbers. The latter information could not 
be obtained using Kraichnan’s approach. It should be noted that although there is 
good agreement between the present theory and the experimental results (Kulacki & 
Nagle 1975; Kulacki & Emara 1977), there is lack of rigorous theoretical basis for the 
existence of an overlap region in which we match the expressions for the near-field and 
far-field temperatures. Further work is needed in this area. 



Heat source-driven thermal convections 757 

The author wishes to thank Ms Marilyn Goldman and Mrs Gloria Ridges for typing 
and manuscript preparation. This research was performed under the auspices of the 
U.S. Department of Energy. 

The submitted manuscript has been authored by a contractor of theU.S. Government 
under contract no. W-31-109-ENG-38. Accordingly, the U.S. Government retains a 
non-exclusive, royalty-free license to publish or reproduce the published form of this 
contribution, or allow others to do so, for U.S. Government purposes. 

R E F E R E N C E S  

BERGHOLZ, R. F., CHEN, M. M. & CHEUNG, F. B. 1979 Generalization of heat transfer results 
for turbulent free convection adjacent to horizontal surfaces. Int .  J .  Heat Mass Transfer 22, 

CHEUNG, F. B. 1977 Natural convection in a volumetrically heated fluid layer at high Rayleigh 
numbers. Int .  J .  Heat Mass Transfer 20, 499-506. 

CHEUNG, F. B. 1978a Turbulent natural convection in a. horizontal fluid layer with time 
dependent volumetric energy sources A.I.A.A.IA.S.IC1.E. Thermophysics & Heat Transfer 
Conf., Palo Alto, paper No. 78-HT-6. 

CREUNG, F. B. 1978b Correlation equations for turbulent thermal convection in a horizontal 
fluid layer heated internally and from below. J .  Heat Transfer 100, 416-422. 

CHU, T. Y. & GOLDSTEIN, R. J. 1973 Turbulent convection in a horizontal layer of water. 
J .  Fluid ICfech. 60, 141-159. 

DAVENPORT, F. & KING, C. J. 1975 A note on Hoard’s model for turbulent natural convection. 
J .  Heat Transfer 97, 476-478. 

FIEDLER, H. & WILLE, R. 1971 Warmetransport bie frier Konvektion in einer horizontalen 
Flussigkeitsschicht mit Volumenheizung, Teil 1 : Integraler Warmetransport. Rep. Dtsch 
Forschungs Varsuchsanstalt Luft-Raumfahrt, Inst. Turbulenzfenschung, Berlin. 

GARON, A. M. & GOLDSTEIN, R. J. 1973 Velocity and heat transfer measurements in thermal 
convection. Phys. Fluids 16, 1818-1825. 

HERRING, J. R. 1964 Investigation of problems in thermal convection: Rigid boundaries. 
J .  Atmos. Sci.  21, 277-290. 

HOWARD, L. N. 1966 Convection a t  high Rayleigh number. In  Proc. 11th Cong. Appl .  Mech. 
(ed. H. Gortler), pp. 1109-1115. 

KRAICHNAN, R. H. 1962 Turbulent thermal convection a t  arbitrary Prandtl number. Phys. 

KULACKI, F. A. & EMARA, A. A.  1977 Steady and transient thermal convection in a fluid layer 

KULACKI, F. A. & NAGLE, M. E. 1975 Natural convection in a horizontal fluid layer with 

LONG, R. R. 1976a The relation between Nusselt number and Rayleigh number in turbulent 

LONG, R. R. 1976b Theories of turbulent thermal convection. Heat Transfer and Turbulent 

MALKUS, W. V. R. 1954 The heat transport and spectrum of thermal turbulence. Proc. Roy. Soc. 

MANTON, M. J. 1975 On the high Rayleigh number heating of a fluid above a horizontal surface. 
A p p l .  Sci.  Res. 31, 267-277. 

PRIESTLEY, C. H. B. 1959 Turbulent Transfer i n  the Lower Atmosphere. University of Chicago 
Press. 

SPARROW, E. M., HUSAR, R. B. & GOLDSTEIN, R. J. 1970 Observations and other characteristics 
of thermals. J .  Fluid Mech. 41, 793-800. 

763-769. 

Fluids 5. 1374-1389. 

with uniform volumetric energy sources. J .  Fluid Mech. 83, 375-395. 

volumetric energy sources. J .  Heat Transfer 91, 204-21 1. 

thermal convection. J .  Fluid Mech. 73, 445-451. 

Buoyant Convection (ed. D. B. Spalding & N. Afgan), pp. 79-91. Hemisphere. 

A 225, 196-212. 



758 F .  B. Cheung 

S P ~ O E L ,  E. A. 1971 Convection in stars, I. Basic Boussinesq convection. Ann. Rev. Astronomy 

TENNEKES, H. & LUMLEY, J. L. 1972 A Firet Course in Turbuknce. Mctssachusetts Institute of 

THRELFALL, D. C. 1975 Free convection in low-temperature gaseous helium. J .  Fluid Mech. 

& Astrophys. 9, 323-352. 

Technology Press. 

67, 17-28. 


